/* * Copyright (c) 2019 Clementine Computing LLC. * * This file is part of PopuFare. * * PopuFare is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * PopuFare is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with PopuFare. If not, see . * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common_defs.h" #ifndef DEFAULT_BAUD #define DEFAULT_BAUD (B115200) #endif // ------------------------------------------- This horrible blob of code goes and hunts for package install records and gathers // ------------------------------------------- them into a sane data structure for display to the user in status/diagnostic screens. #define PKG_SEARCH_DIR CONFIG_FILE_PATH #define PATTERN_SUFFIX ".tgz.version" #define CHECKSUM_SUFFIX ".tgz.checksum" #define PATTTERN ("*" PATTERN_SUFFIX) static int package_filter(const struct dirent *file) { int match = fnmatch(PATTTERN, file->d_name, 0); return !match; } int find_packages(package_signature *pkgs, int n) { int i = 0; int scandir_ret; struct dirent **matchlist; int j; int match_len; int suffix_len = strlen(PATTERN_SUFFIX); FILE *f; struct stat st; char pathbuffer[1024]; // Look for any file that matches the pattern PATTERN (see package_filter above) and return into matchlist a pointer // to and array of pointers to dirent structures for each directory entry that made the cut, sorted alphabetically // scandir_ret = scandir(PKG_SEARCH_DIR, &matchlist, package_filter, alphasort); // If that seemed to work.... // if( (scandir_ret >= 0) && (matchlist != NULL) ) { // Walk the resultant list // for(i=0; i < scandir_ret; i++) { // if we've filled our caller's buffer, break out now // if(i >= n) { break; } // Go figure out how long the module name part is (it'll be the length of the filename minus the length of the suffix) // match_len = strlen(matchlist[i]->d_name) - suffix_len; // If that would cause an overflow, truncate it... // if (match_len > (PKG_STRING_SIZE - 1)) { match_len = PKG_STRING_SIZE - 1; } // Copy our package name // strncpy(pkgs[i].pkgname, matchlist[i]->d_name, match_len); pkgs[i].pkgname[match_len] = '\0'; // (if fscanf fails, we want an empty string rather than random crap from memory...) // pkgs[i].pkgver[0] = '\0'; // generate the file name of the package version string... // snprintf(pathbuffer, sizeof(pathbuffer), "%s%s%s", PKG_SEARCH_DIR, pkgs[i].pkgname, PATTERN_SUFFIX); // Go and read the contents of that into the pkgver part of our structure... // f = fopen(pathbuffer, "rb"); if (f) { fscanf(f, PKG_STRING_FORMAT, pkgs[i].pkgver); fclose(f); } pkgs[i].checksum[0] = '\0'; // generate the file name of the file containing the package checksum // snprintf(pathbuffer, sizeof(pathbuffer), "%s%s%s", PKG_SEARCH_DIR, pkgs[i].pkgname, CHECKSUM_SUFFIX); // Go and read the contents of that into the checkdum part of our structure... // f = fopen(pathbuffer, "rb"); if (f) { fscanf(f, PKG_STRING_FORMAT, pkgs[i].checksum); fclose(f); } pkgs[i].installed = 0; // Go and grab the mtime of the package install file // if (!stat(pathbuffer, &st)) { pkgs[i].installed = st.st_mtime; } // Free this dirent // free(matchlist[i]); } // Clean up any leftovers // for (j = i; j < scandir_ret; j++) { free(matchlist[i]); } // free the array of pointers // free(matchlist); } // return the number actually filled // return i; } // -------------------------------------------------------------------------------------------------- // This function checks the dropfile to see if the tunnel is up... // int tunnel_is_up() { struct stat st; int retval; retval = stat(TUNNEL_DROPFILE, &st); if (retval) { return 0; } else { return 1; } } // This function checks the dropfile to see if the GPRS modem is up... // int gprs_is_up() { struct stat st; int retval; retval = stat(GPRS_DROPFILE, &st); if(retval) { return 0; } else { return 1; } } // This function gets the equipment number from the appropriate config file // If it cannot be gotten, it returns -1 // int get_equip_num() { FILE *f; int num = -1; f = fopen(EQUIPNUM_FILE, "rb"); if (f) { fscanf(f,"%d",&num); fclose(f); } else { num = -1; } return num; } // This function sets the euipment number in the config file. // if this operation fails, -1 is returned. // int set_equip_num(int num) { FILE *f; if ( (num < 1) || (num > MAX_EQUIPNUM) ) { return -1; } f = fopen(EQUIPNUM_TEMPFILE, "wb"); if (f) { fprintf(f,"%d\n", num); fclose(f); rename(EQUIPNUM_TEMPFILE, EQUIPNUM_FILE); sync(); return 0; } return -1; } // int get_server_desc(char *desc, int len) { char svrname[LINE_BUFFER_SIZE]; FILE *f; if (!desc) { return -1; } if (len <= 0) { return -1; } f = fopen(SERVER_DESC_FILE, "rb"); if (f) { fgets(svrname, LINE_BUFFER_SIZE, f); svrname[LINE_BUFFER_SIZE - 1] = '\0'; strip_crlf(svrname); strncpy(desc, svrname, len); desc[len - 1] = '\0'; return 0; } return -1; } int get_field(char *dest, char *src, int dest_len, int *eol_flag) { int i,j; int done = 0; int eol = 0; i = j = 0; while ( ! done ) { switch(src[i]) { case '\0': // If we've hit the end of the input line case '\n': case '\r': // cap off our destination string if there is room // if (j < dest_len) { dest[j++] = '\0'; } // set our internal End Of Line flag // eol = 1; // set the done flag so we break out of the while // done = 1; break; // If we have hit a record boundary // case '\t': // cap off our input line // if (j < dest_len) { dest[j++] = '\0'; } // Advance past this input character // i++; // flag us as done // done = 1; break; // otherwise (for normal characters) just copy them if there is space // default: if (j < dest_len) { dest[j++] = src[i]; } // and advance past them // i++; break; } } // If we have filled our line to capacity // if ( j == dest_len ) { // Truncate it by 1 character to fit the terminating NUL // dest[dest_len - 1] = '\0'; } // If the user has passed us a place to store our EOL flag, // if( eol_flag != NULL ) { // store it there // *eol_flag = eol; } // Return the index of the next character to be consumed. // return i; } // magic hash function hashes english strings well enough for our needs // unsigned long long stringhash(char *string) { unsigned long long hash = 5381; int c; while ((c = *string++)) { /* hash * 33 + c */ hash = ((hash << 5) + hash) + c; } return hash; } int strip_crlf(char *buffer) { char *src,*dst; int count=0; // Set both our source and destination pointers to the buffer in question // src=dst=buffer; // While we still have unprocessed buffer bytes // while(*src) { // If we encounter a CR or LF character // if((*src == '\r') || (*src == '\n')) { // If the NEXT character is not another EOL character or a terminating nul // if( (src[1] != '\0') && (src[1] != '\r') && (src[1] != '\n') ) { src++; // replace the CR or LF with a space. // *dst++ = ' '; count++; continue; } // On the other hand, if what comes next is EOL or end of string, // else { // just trim this character // src++; continue; } } // If this character isn't one of the special ones, just copy it. // *dst++ = *src++; count++; } // Copy the terminating NUL // *dst++ = *src++; return count; } int open_rs232_device(char *devname, int custom_baud, int linemode) { struct termios tty={0}; int retval; int fd; // Open the specified character device READ/WRITE and not as a Controlling TTY // fd = open(devname, O_RDWR | O_NOCTTY); if (fd < 0) { #ifdef COMMON_PRINT_WARNING fprintf(stderr, "Warning: Cannot open TTY %s\n", devname); #endif return -1; } // Try and fetch the TTY properties of the device // retval = ioctl(fd, TCGETS, &tty); if (retval) { #ifdef COMMON_PRINT_WARNING fprintf(stderr, "Warning: Cannot get TTY attributes on %s. Not a TTY?\n", devname); #endif close(fd); return -1; } if (custom_baud > 0) { tty.c_cflag = custom_baud | CS8 | CREAD | CLOCAL; } else { tty.c_cflag = DEFAULT_BAUD | CS8 | CREAD | CLOCAL; } if (linemode) { tty.c_iflag = IGNBRK; tty.c_oflag = 0; tty.c_lflag = ICANON; tty.c_line = 0; tty.c_cc[VMIN] = 1; // minimum one character read tty.c_cc[VTIME] = ACCUM_SECONDS * 10; // wait ACCUM_SECONDS without any further chars // before giving up on the arrival of a newline. // (VTIME is specified in deciseconds (who knows why...)) tty.c_cc[VEOL] = '\n'; // allow a newline to release the buffer } else { tty.c_iflag = IGNBRK; tty.c_oflag = 0; tty.c_lflag = 0; tty.c_line = 0; tty.c_cc[VMIN] = 1; tty.c_cc[VTIME] = 5; } // try and plunk our desired settings down on the device // retval = ioctl(fd, TCSETS, &tty); if (retval) { #ifdef COMMON_PRINT_WARNING fprintf(stderr, "Warning: Cannot set TTY attributes on %s. Unsupported mode?\n", devname); #endif close(fd); return -1; } // flush the serial port buffers to clean up any detritus that has accumulated before we got here // tcflush(fd, TCIOFLUSH); return fd; } static int read_with_timeout(int fd, void *buffer, int n, int timeout) { int retval; struct pollfd fds[1]; fds[0].fd = fd; fds[0].events = POLLIN; retval = poll(fds, 1, timeout); if (retval > 0) { return read(fd, buffer, n); } else { return retval; } } static int init_device(int fd, device_test_vector *vec, char *diag) { char buffer[1024] = {0}; int i; int retval; int len; char *trav; int timeout = DEVICE_TEST_TIMEOUT; if (vec->init_timeout > 0) { timeout = vec->init_timeout; } // If we were given an init string // if (vec->init_string != NULL) { // calculate how long it is // len = strlen(vec->init_string); // send it on its way // retval = write(fd, vec->init_string, len); // if that didn't work // if (retval != len) { // complain and fail // if (diag) { snprintf(diag, DIAG_BUFFER_SIZE, "Cannot write init string to device."); } return -1; } } i = 0; while (i < vec->n_reply_lines) { // Ask the kernel for a line from the TTY // retval = read_with_timeout(fd, buffer, sizeof(buffer), timeout); // If we DID read something from the device, make sure it is correct // if(retval > 0) { buffer[retval] = '\0'; strip_crlf(buffer); trav = buffer; // Skip any garbage before the start character // while (*trav && (*trav != '/')) { trav++; } if (*trav == '\0') { continue; // ignore blank lines } if ( (trav[0] == '/') && (trav[1] == '?') && (trav[2] == ':') ) { // ignore device ID lines // continue; } // The order of these tests in importand. Short circuit keeps us from // dereferencing expected_reply_lines if the first test fails // // If we have a pattern to test against // if ( (vec->reply_strings != NULL) && (vec->reply_strings[i] != NULL) ) { if (strcmp(trav, vec->reply_strings[i])) { if (diag) { snprintf(diag, DIAG_BUFFER_SIZE, "Read init reply line %d from device, expected \"%s\" but got \"%s\"", i, vec->reply_strings[i], trav); } return -1; } } } // If we DIDN'T read anything from the device... // else { // Complain // if (diag) { snprintf(diag, DIAG_BUFFER_SIZE, "Reading init reply from device timed out waiting for line %d", i); } // And fail // return -1; } i++; } return 0; } int test_and_init_device(int fd, device_test_vector *vec, char *diag) { char buffer[DEV_INIT_BUFFER_SIZE] = {0}; char module_id[DEV_INIT_BUFFER_SIZE] = {0}; int tries = DEVICE_TEST_TRIES; int timeout = DEVICE_TEST_TIMEOUT; int retval; char *trav; if (vec == NULL) { return -1; } if (vec->dev_id == NULL) { return -1; } if (vec->init_tries > 0) { tries = vec->init_tries; } if (vec->init_timeout > 0) { timeout = vec->init_timeout; } // We want to iterate through DEVICE_TEST_TRIES tries at getting a valid line from the device // do { // Send a CR to stimulate the device to spit out its help message // write(fd,"\r", 1); // Ask the kernel for a line from the TTY // retval = read_with_timeout(fd, buffer, sizeof(buffer), timeout); // If we actually got a line of data // if (retval > 0) { buffer[retval] = '\0'; strip_crlf(buffer); // Start examining our buffer // trav = buffer; // Skip any garbage before the start character // while (*trav && (*trav != '/')) { trav++; } // See if it is our Device ID / help line... // if ( (trav[0] == '/') && (trav[1] == '?') && (trav[2] == ':') ) { // Skip the header and go to the body // trav += 3; // Look for our module ID string // retval = sscanf(trav, " ?=%s", module_id); if (retval < 1) { // Look for our module ID string without leading space // retval = sscanf(trav, "?=%s", module_id); } // If we have found id // if (retval == 1) { // See if it is the correct one // if (!strcmp(module_id, vec->dev_id)) { // If so, pass on our diagnostic message if we have a place to // if (diag) { snprintf(diag, DIAG_BUFFER_SIZE, "Device connected OK"); } return init_device(fd, vec, diag); // Perform initialization and return the status of that operation } // Otherwise, if it is NOT the one we are expecting // else { // Complain if we have a place to // if (diag) { snprintf(diag, DIAG_BUFFER_SIZE, "Device present: Expecting: \"%s\" Got: \"%s\"", vec->dev_id, module_id); } return -2; // Return a distinct failure code } } } // If we DIDN'T get the line we were looking for, pretend it was blank so we'll try again... // else { // This pretends the received line was black. // retval = 0; } // if we got 0 bytes or EINTR from the alarm firing // } // While we still have tries and a previous try didn't work // } while ( (retval <= 0) && ( --tries > 0) ); if (diag) { snprintf(diag, DIAG_BUFFER_SIZE, "Could not get reply from device"); } return -1; } // ======================================================================================================== // ------------------------------- WATCHDOG TIMER and other SIGNAL HANDLERS ------------------------------- // ======================================================================================================== // volatile int hup_request_status = 0; // volatile sig_atomic_t hup_request_status = 0; void request_hup(char *fmt, ...) { va_list ap; hup_request_status = 1; va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); } // Our signal handlers and standard message handlers will OR these bits into exit_request_status // volatile int exit_request_status = 0; static int exit_signal_counter = 0; void request_polite_exit(int reason, char *fmt, ...) { va_list ap; exit_request_status |= reason; if (reason) { exit_signal_counter++; } if (exit_request_status & EXIT_REQUEST_CRASH) { va_start(ap, fmt); vsyslog(LOG_ERR, fmt, ap); va_end(ap); exit(EX_SOFTWARE); } if (exit_signal_counter >= MAX_POLITE_EXIT_REQUESTS) { va_start(ap, fmt); vsyslog(LOG_NOTICE, fmt, ap); va_end(ap); exit(SIGTERM); } } static void watchdog_handler(int signum, siginfo_t *info, void *data) { request_polite_exit(EXIT_REQUEST_CRASH, "Watchdog timer has expired!"); } static void term_int_handler(int signum, siginfo_t *info, void *data) { request_polite_exit(EXIT_REQUEST_INT_TERM, "Received signal %d", signum); } static void hard_crash_handler(int signum, siginfo_t *info, void *data) { switch(signum) { case SIGSEGV: request_polite_exit(EXIT_REQUEST_CRASH, "Segmentation fault at virtual address %p", info->si_addr); break; case SIGILL: request_polite_exit(EXIT_REQUEST_CRASH, "Illegal instruction at virtual address %p", info->si_addr); break; case SIGFPE: request_polite_exit(EXIT_REQUEST_CRASH, "Floating point exception at virtual address %p", info->si_addr); break; case SIGBUS: request_polite_exit(EXIT_REQUEST_CRASH, "SIGBUS (hardware error!) at address %p", info->si_addr); break; default: request_polite_exit(EXIT_REQUEST_CRASH, "Caught Signal %d", signum); break; } } void configure_signal_handlers(char *procname) { struct sigaction sa = {{0}}; openlog(procname, LOG_CONS | LOG_PERROR, LOG_USER); #ifdef USE_WATCHDOG_ALARM sa.sa_sigaction = watchdog_handler; sa.sa_flags = SA_SIGINFO; sigfillset(&sa.sa_mask); sigaction(SIGALRM, &sa, NULL); RESET_WATCHDOG(); #endif // Install our "boy did we ever fuck up this time" signal handler // to trap segmentation faults, illegal instructions, divides by zero, // and things like RAM chips popping off a running board (SIGBUS). // sa.sa_sigaction = hard_crash_handler; sa.sa_flags = SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGILL, &sa, NULL); sigaction(SIGFPE, &sa, NULL); sigaction(SIGBUS, &sa, NULL); // Install our polite exit handler... // sa.sa_sigaction = term_int_handler; sa.sa_flags = SA_SIGINFO | SA_RESTART; // Allow interrupted I/O calls to finish to facilitate clean exit sigaction(SIGTERM, &sa, NULL); sigaction(SIGINT, &sa, NULL); } // ------------------