/*
* Copyright (c) 2019 Clementine Computing LLC.
*
* This file is part of PopuFare.
*
* PopuFare is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PopuFare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with PopuFare. If not, see .
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "../common/common_defs.h"
#include "../commhub/commhub.h"
#include "../commhub/client_utils.h"
#include "fbutil.h"
#include "expat-2.0.1/lib/expat.h"
#include "menu.h"
int diu_fd = -1;
int hub_fd = -1;
time_t last_hub_try = 0;
time_t last_diu_clock = 0;
gps_status my_gps_stat={0};
time_t mkgmtime(struct tm *tm);
int token_diag_serial = 0;
char token_diag_string[LINE_BUFFER_SIZE] = {0};
unsigned char menu_checksum[MD5_DIGEST_LENGTH];
int md5_of_file(char *filename, void *result)
{
FILE *f = NULL;
char chunk[LINE_BUFFER_SIZE]={0};
int retval = 0;
MD5_CTX ctx;
if(!result)
return -1;
if(!filename)
return -1;
if(!MD5_Init(&ctx))
{
return -1;
}
f = fopen(filename, "rb");
if(!f)
{
return -1;
}
while(1)
{
retval = fread(chunk, 1, LINE_BUFFER_SIZE, f);
if(retval <= 0)
{
break;
}
else
{
MD5_Update(&ctx, chunk, retval);
}
}
fclose(f);
MD5_Final((unsigned char *)result, &ctx);
return 0;
}
void set_diu_clock(int fd, time_t tt)
{
struct tm t;
char buffer[16];
int n;
localtime_r(&tt, &t);
n = sprintf(buffer, "/C:%02d%02d\r", t.tm_hour, t.tm_min);
write(fd, buffer, n);
}
// This function takes a GPS timestamp (in gross GPS float format + gross integer date) and
//makes it into a sane UTC timestamp. If we are more than MAX_GPS_CLOCK_DRIFT seconds off
//from GPS time, it sets the system clock to GPS time.
int handle_gps_time(float gtime, int date)
{
int day,month,year;
int hour,min,sec,frac;
int n = 0;
time_t utc,now;
char buffer[32] = {0};
struct message_record outgoing_msg;
now = time(NULL);
day = month = year = 0;
hour = min = sec = frac = 0;
// Just to be *ahem* clear, as per NMEA standard the date is encoded DDMMYY, and the time of day
// is encoded HHMMSS[.frac] where there is an optional fractional second field denoted by a decimal point.
// we must be able to decode the fractional seconds field but we discard the information since it is not
// reliable enough to be worth the bother.
// Whoever thought that NMEA GPS should encode the time in this format ought to be shot...
n = 0; //Start out with zero parsed fields
// Construct and then re-parse the time from its icky format to discrete values (this should result
// in at least three (possibly four) fields.
sprintf(buffer,"%010.3f", gtime);
n += sscanf(buffer,"%02d%02d%02d.%d", &hour, &min, &sec, &frac);
//Construct and then re-parse the date from its icky format to discrete values. This should result in three fields.
sprintf(buffer,"%06d", date);
n += sscanf(buffer,"%02d%02d%02d", &day, &month, &year);
if(n >= 6) //if we scanned at all required fields
{
struct tm gpstm = {0};
year += GPS_DATE_CENTURY; //GPS date only uses two digits for year, so we must assume the century
gpstm.tm_year = year - 1900; //tm.tm_year is based on the year 1900
gpstm.tm_mon = month - 1; //January = month 0 in struct tm.tm_mon whereas January = month 1 in an NMEA GPS date.
gpstm.tm_mday = day;
gpstm.tm_hour = hour;
gpstm.tm_min = min;
gpstm.tm_sec = sec;
utc = mkgmtime(&gpstm); //Go and turn the struct tm we've just populated into an utc time stamp (seconds since epoch)
my_gps_stat.gpstime = utc; //Most importantly... Remember what the self-reported GPS time stamp is.
// printf("%02d-%02d-%04d %02d:%02d:%02d\n",day,month,year,hour,min,sec);
// printf("CALCULATED: %d\nSYSTEM : %d\n\n",(int)utc,(int)time(NULL));
if(abs(utc - now) > MAX_GPS_CLOCK_DRIFT) //if we have more than MAX_GPS_CLOCK_DRIFT seconds of clock drift
{
struct timeval ts = {0};
ts.tv_sec = utc; //Set the timeval struct to the calculated utc timestamp from the GPS unit.
ts.tv_usec = 0;
settimeofday(&ts, NULL); //Set the system clock from GPS time using said timeval struct.
//system("/sbin/hwclock --systohc"); //Go and push the new system clock value into the hardware realtime clock chip.
if( hub_fd >= 0) //If we have a valid connection to the IPC hub
{
//Stick a message into the diagnostic log to record the fact that we've set the system clock from GPS
format_log_message(&outgoing_msg, LOGLEVEL_DEBUG, "Set syatem clock from previous value (%d) to GPS time (%d).", (int)now, (int)utc );
send_message(hub_fd, &outgoing_msg);
}
}
}
return 0;
}
#ifdef CLEAR_GPS_ON_STALE
static inline void clear_stale_gps_data()
{
my_gps_stat.lat = my_gps_stat.lon = my_gps_stat.heading = my_gps_stat.velocity = 0;
my_gps_stat.num_sats = 0;
}
#else
static inline void clear_stale_gps_data()
{
}
#endif
static int handle_stale_gps_condition()
{
// This return code will be > 0 if this function generates a status change that
// will then need to be communicated to other modules in the system via a message to
// MAILBOX_GPS_STATUS.
int return_code = 0;
// This will hold the gps_good flag as it stood at the beginning of this subroutine
// previous to any adjustments we make.
int previous_good_flag = my_gps_stat.gps_good;
int stale_time = 0;
time_t now = time(NULL);
stale_time = (now - my_gps_stat.stamp);
// If we have entered this function with the impression that we have a valid GPS fix...
if(previous_good_flag > 0)
{
// If it has been at least GPS_STALE_THRESHOLD seconds since the last fix
if( stale_time >= GPS_STALE_THRESHOLD )
{
clear_stale_gps_data();
my_gps_stat.gps_good = 0;
return_code |= 1;
}
}
// If we have determined that we need to declare the GPS data stale and invalid and
// we have a valid connection to the IPC hub we should use that IPC hub connection to
// add a note to the diagnostic log indicating that we've declared the GPS data stale.
if( return_code && (hub_fd >= 0) )
{
struct message_record outgoing_msg;
format_log_message(&outgoing_msg, LOGLEVEL_DEBUG, "GPS fix has been stale for %d seconds, setting GPS = NO.", stale_time);
send_message(hub_fd, &outgoing_msg);
}
return return_code;
}
int update_gps(char *in)
{
// This will hold the number of matched variables populated by sscanf().
int num = 0;
// This will allow us to know if we have made a transition from an invalid
// GPS fix to a valid one so that we can log this information.
int previous_good_flag = my_gps_stat.gps_good;
// This return code will be > 0 if this function generates a status change that
// will then need to be communicated to other modules in the system via a message to
// MAILBOX_GPS_STATUS.
int return_code = 0;
if(!strncmp(in,"$GPRMC",6))
{
float f1=0;
char f2=0;
float f3=0;
char f4=0;
float f5=0;
char f6=0;
float f7=0;
float f8=0;
int f9=0;
float f10=0;
char f11=0;
num = sscanf(in,"$GPRMC,%f,%c,%f,%c,%f,%c,%f,%f,%d,%f,%c",&f1,&f2,&f3,&f4,&f5,&f6,&f7,&f8,&f9,&f10,&f11);
if(num == 11) //If we have a full GPRMC sentence we can consider setting the time
{
// Require at least MIN_SATS_FOR_TIME satellites to accept a new system clock value from the GPS unit.
// This is to keep a crummy GPS fix from generating a bogus or unstable system time.
if(my_gps_stat.num_sats >= MIN_SATS_FOR_TIME)
{
// Pass the time field (f1) and the date field (f9) in to the routine that sets the system clock if needed.
// (this routine also stores the utc timestamp derived from the GPS date and time fields so it can be passed to
// other modules that may have a need for this information).
handle_gps_time(f1,f9);
}
}
if(num > 0)
{
my_gps_stat.lat = f3 * ((f4 == 'N')?(1):(-1)); //update snapshot with latitude
my_gps_stat.lon = f5 * ((f6 == 'E')?(1):(-1)); //longitude
my_gps_stat.velocity = f7 / 1.94384449f; //meters per second (converted from knots)
my_gps_stat.heading = f8; //course
my_gps_stat.stamp = time(NULL); //update snapshot's staledate
return_code |= 1;
}
}
else if(!strncmp(in,"$GPGGA",6))
{
int f1=0;
float f2=0;
char f3=0;
float f4=0;
char f5=0;
int f6=0;
int f7=0;
float f8=0;
float f9=0;
char f10=0;
float f11=0;
char f12=0;
num=sscanf(in,"$GPGGA,%d,%f,%c,%f,%c,%d,%d,%f,%f,%c,%f,%c",&f1,&f2,&f3,&f4,&f5,&f6,&f7,&f8,&f9,&f10,&f11,&f12);
if(num == 12)
{
if ( f7 >= 3 ) // require 3 satellites minimum
{
my_gps_stat.gps_good = f6; //store GPS valid flag in snapshot
my_gps_stat.num_sats = f7; //store number of satellites in view in snapshot
// Do NOT store the timestamp since we only want to remember timestamps of position
// fixes and the GPGGA message is all metadata (number of satellites, fix quality, etc...).
// It is worth noting that GPGGA does report altitude, but that is not a piece of information
// we track because the road is where the road is, and if a bus becomes airborn we have much
// bigger problems than figuring out how far off the ground it is...
return_code |= 1;
}
}
}
return_code |= handle_stale_gps_condition();
// If we have a connection to the IPC hub and we had previously not had a valid
// GPS fix but we now do, make a note of it in the diagnostic log.
if( (previous_good_flag == 0) && (my_gps_stat.gps_good != 0) && (hub_fd >= 0) )
{
struct message_record outgoing_msg;
format_log_message(&outgoing_msg, LOGLEVEL_DEBUG, "GPS fix is now valid with %d satellites. Setting GPS = YES.", my_gps_stat.num_sats);
send_message(hub_fd, &outgoing_msg);
}
return return_code;
}
void maintain_ipc_hub_connect(char *progname)
{
struct message_record outgoing_msg;
if(hub_fd < 0) //if we have no connection to the IPC hub
{
if( (time(NULL) - last_hub_try) > HUB_RETRY_TIME ) //if we haven't tried the hub in a few seconds
{
last_hub_try = time(NULL); //retry it
hub_fd = connect_to_message_server(progname); //try and get one
if(hub_fd >= 0)
{
//Subscribe to the default status messages
subscribe_to_default_messages(hub_fd);
//Subscribe to our specific message
prepare_message(&outgoing_msg, MAILBOX_SUBSCRIBE, MAILBOX_DRIVER_NOTIFY, strlen(MAILBOX_DRIVER_NOTIFY));
send_message(hub_fd,&outgoing_msg);
prepare_message(&outgoing_msg, MAILBOX_SUBSCRIBE, MAILBOX_PADDLE_ACK, strlen(MAILBOX_PADDLE_ACK));
send_message(hub_fd,&outgoing_msg);
prepare_message(&outgoing_msg, MAILBOX_SUBSCRIBE, MAILBOX_VAULT_DROP, strlen(MAILBOX_VAULT_DROP));
send_message(hub_fd,&outgoing_msg);
prepare_message(&outgoing_msg, MAILBOX_SUBSCRIBE, MAILBOX_TOKEN_MAG, strlen(MAILBOX_TOKEN_MAG));
send_message(hub_fd,&outgoing_msg);
prepare_message(&outgoing_msg, MAILBOX_SUBSCRIBE, MAILBOX_TOKEN_RFID, strlen(MAILBOX_TOKEN_RFID));
send_message(hub_fd,&outgoing_msg);
//Ask for a status update
prepare_message(&outgoing_msg, MAILBOX_STATUS_REQUEST, "", 0);
send_message(hub_fd,&outgoing_msg);
}
else
{
fprintf(stderr, "Cannot connect to IPC hub!\n");
}
}
}
}
menutree *mt = NULL;
int redraw_flag = 0;
message_callback_return handle_status_request(struct message_record *msg, void *param)
{
struct message_record outgoing_msg;
if(hub_fd >= 0)
{
prepare_message(&outgoing_msg, MAILBOX_DRIVER_STATUS, &my_driver_status, sizeof(my_driver_status));
send_message(hub_fd, &outgoing_msg);
prepare_message(&outgoing_msg, MAILBOX_GPS_STATUS, &my_gps_stat, sizeof(my_gps_stat));
send_message(hub_fd, &outgoing_msg);
}
return MESSAGE_HANDLED_CONT;
}
message_callback_return handle_vault_drop(struct message_record *msg, void *param)
{
if(diu_fd >= 0)
{
write(diu_fd, "/V:\r", 4);
}
return MESSAGE_HANDLED_CONT;
}
char dup_notify_str[MAX_PAYLOAD_LENGTH] = {0};
int dup_notify_count = 0;
long long dup_notify_usec = 0;
message_callback_return handle_driver_notify(struct message_record *msg, void *param)
{
int is_dup;
char dup_text[MAX_PAYLOAD_LENGTH] = {0};
pixel bgcolor = FBCOLOR_WHITE;
pixel textcolor = FBCOLOR_BLACK;
long long dup_usec_delta = 0;
if(strncmp((const char *)(msg->payload), dup_notify_str, MAX_PAYLOAD_LENGTH))
{
dup_notify_count = 1;
strncpy(dup_notify_str, (const char *)(msg->payload), MAX_PAYLOAD_LENGTH - 1);
dup_notify_str[MAX_PAYLOAD_LENGTH - 1] = '\0';
is_dup = 0;
dup_notify_usec = 0;
}
else
{
dup_notify_count++;
is_dup = 1;
dup_usec_delta = get_usec_time() - dup_notify_usec;
dup_notify_usec = get_usec_time();
}
switch(msg->payload[0])
{
case LOGLEVEL_EVENT:
if(!is_dup || (dup_usec_delta >= DUP_USEC_BEEP_THRESHOLD))
{
DIU_ACK_BEEP(diu_fd);
}
break;
case LOGLEVEL_REJECT:
bgcolor = FBCOLOR_LTRED;
if(!is_dup || (dup_usec_delta >= DUP_USEC_BEEP_THRESHOLD))
{
DIU_ERROR_BEEP(diu_fd);
}
break;
case LOGLEVEL_ACCEPT:
bgcolor = FBCOLOR_LTGREEN;
if(!is_dup || (dup_usec_delta >= DUP_USEC_BEEP_THRESHOLD))
{
DIU_ACK_BEEP(diu_fd);
}
break;
case LOGLEVEL_ERROR:
bgcolor = FBCOLOR_RED;
textcolor = FBCOLOR_CYAN;
if(!is_dup || (dup_usec_delta >= DUP_USEC_BEEP_THRESHOLD))
{
DIU_CRITICAL_BEEP(diu_fd);
}
break;
default:
break;
}
if(is_dup)
{
snprintf(dup_text, MAX_PAYLOAD_LENGTH, "%d x %s", dup_notify_count, &msg->payload[1]);
replace_diu_message(bgcolor, textcolor, dup_text);
}
else
{
add_diu_message(bgcolor, textcolor, (char *)(&(msg->payload[1])));
}
redraw_flag |= 1;
return MESSAGE_HANDLED_CONT;
}
message_callback_return handle_paddle_ack(struct message_record *msg, void *param)
{
set_paddle_req *pr = (set_paddle_req *)msg->payload;
paddle_req.result = pr->result;
return MESSAGE_HANDLED_CONT;
}
message_callback_return handle_token_diag(struct message_record *msg, void *param)
{
strncpy(token_diag_string, (const char *)(msg->payload), sizeof(token_diag_string));
token_diag_string[sizeof(token_diag_string) - 1] = '\0';
token_diag_serial++;
return MESSAGE_HANDLED_CONT;
}
//----------------------------------
time_t diu_error_burst = 0;
int diu_error_counter = 0;
static inline int can_report_diu_error()
{
time_t now = time(NULL);
//If our last potential burst lockout has expired...
if( (now - diu_error_burst) >= DIU_ERROR_RATE_LIMIT)
{
diu_error_counter = 0; //reset our burst counter
diu_error_burst = now; //and start the "potential burst" time at this message
}
if(diu_error_counter < DIU_ERROR_BURST_LIMIT) //if we haven't hit our burst limit...
{
diu_error_counter++; //count this message against our burst limit
return 1; //and allow it to pass
}
else //if we have hit our limit
{
return 0; //ignore this message
}
}
//----------------------------------
int main(int argc, char **argv)
{
char line[LINE_BUFFER_SIZE] = {0};
struct message_record incoming_msg;
struct message_record outgoing_msg;
struct pollfd fds[2];
int nfd;
int poll_return;
int read_return;
int i;
time_t down_time = 0;
int calibration = 0;
time_t now;
int retval = 0;
int tz = 0;
int tx = 0;
int ty = 0;
time_t last_stale_gps_check = 0;
if(open_framebuffer())
{
fprintf(stderr,"Cannot open framebuffer!\n");
}
mt = load_menutree(DRIVER_MENU_FILE);
if(!mt)
{
fprintf(stderr, "Error loading %s\n", DRIVER_MENU_FILE);
return -1;
}
else
{
//Remember a checksum so we don't have to boot a logged in driver for a system-wide HUP if
//the menu tree hasn't indeed changed...
md5_of_file(DRIVER_MENU_FILE, menu_checksum);
// print_menu_tree(mt);
if(init_menutree(mt))
{
fprintf(stderr, "Error initializing menu tree from %s\n", DRIVER_MENU_FILE);
}
redraw_flag = 1;
}
//Configure our signal handlers to deal with SIGINT, SIGTERM, etc... and make graceful exits while logging
configure_signal_handlers(argv[0]);
//Make an initial attempt to get in touch with the interprocess communication hub (it may not be up yet depending on the start order)
maintain_ipc_hub_connect(argv[0]);
//Register our defualt system message processing callbacks
register_system_status_callbacks();
register_dispatch_callback(MAILBOX_STATUS_REQUEST, CALLBACK_USER(1), handle_status_request, NULL);
register_dispatch_callback(MAILBOX_DRIVER_NOTIFY, CALLBACK_USER(2), handle_driver_notify, NULL);
register_dispatch_callback(MAILBOX_PADDLE_ACK, CALLBACK_USER(3), handle_paddle_ack, NULL);
register_dispatch_callback(MAILBOX_VAULT_DROP, CALLBACK_USER(4), handle_vault_drop, NULL);
register_dispatch_callback(MAILBOX_TOKEN_MAG, CALLBACK_USER(5), handle_token_diag, NULL);
register_dispatch_callback(MAILBOX_TOKEN_RFID, CALLBACK_USER(6), handle_token_diag, NULL);
clear_diu_messages();
while( exit_request_status == EXIT_REQUEST_NONE ) //loop until we get asked to exit...
{
//DEBUG
printf("[%lli] diu_minder: heartbeat\n", get_usec_time());
//DEBUG
RESET_WATCHDOG();
maintain_ipc_hub_connect(argv[0]);
if(diu_fd < 0)
{
diu_fd = open_rs232_device(DRIVER_UI_PORT, USE_DEFAULT_BAUD, RS232_LINE);
if(diu_fd < 0)
{
fprintf(stderr, "Cannot open serial port %s for DIU!\n", DRIVER_UI_PORT);
}
else
{
write(diu_fd, "/Q:aK\r", 6); //Turn on all messages except ACKs for sent commands
}
}
now = time(NULL);
//Every second, we want to update the DIU clock (even though it only shows minutes, this covers power events...)
if((now - last_diu_clock) > 0)
{
if(diu_fd)
{
set_diu_clock(diu_fd, now);
last_diu_clock = now;
}
//Also request a UI redraw if nothing else has, just so that status line gets redrawn
redraw_flag |= 1;
}
//Every second we want to check to make sure that our GPS data have note gone stale...
if((now - last_stale_gps_check) > 0)
{
// If the stale check results in an update to my_gps_stat, we must update any other
// modules which may be tracking GPS status via the IPC hub.
if( handle_stale_gps_condition() > 0 )
{
//If we have a connection to the IPC hub
if(hub_fd >= 0)
{
//Go and toss the data to any other modules who happen to care about GPS
prepare_message(&outgoing_msg, MAILBOX_GPS_STATUS, &my_gps_stat, sizeof(my_gps_stat));
send_message(hub_fd, &outgoing_msg);
}
}
// Either way, remember that we did this stale check.
last_stale_gps_check = now;
}
if(hup_request_status)
{
unsigned char temp_menu_checksum[MD5_DIGEST_LENGTH];
hup_request_status = 0;
//Go and generate a checksum of the new menu file
md5_of_file(DRIVER_MENU_FILE, temp_menu_checksum);
//if it differs from the old one, reload the menu file...
if(memcmp(menu_checksum, temp_menu_checksum, MD5_DIGEST_LENGTH))
{
//Update the remembered checksum to be that of the new menu...
memcpy(menu_checksum, temp_menu_checksum, MD5_DIGEST_LENGTH);
//Free the old menu tree
if(mt)
{
free_menutree(mt);
mt = NULL;
}
//Try and load the new one...
mt = load_menutree(DRIVER_MENU_FILE);
//If that failed, bitch about it!
if(!mt)
{
fprintf(stderr, "Error loading %s\n", DRIVER_MENU_FILE);
return -1;
}
else //otherwise initialize the menu tree
{
if(init_menutree(mt))
{
fprintf(stderr, "Error initializing menu tree from %s\n", DRIVER_MENU_FILE);
}
redraw_flag = 1;
}
}
}
//If it is time to send out a driver status update
if(update_driver_status && (hub_fd >= 0))
{
//do so...
prepare_message(&outgoing_msg, MAILBOX_DRIVER_STATUS, &my_driver_status, sizeof(my_driver_status));
send_message(hub_fd, &outgoing_msg);
update_driver_status = 0;
}
//If a paddle change request has resulted in a change
if(check_paddle_request(mt))
{
//do a redraw of the UI
redraw_flag |= 1;
}
//If we have to redraw the UI
if(redraw_flag && !calibration)
{
//Redraw the menu reflecting any changes from the last touchscreen input
//or other stimulus
draw_menu(mt);
#ifdef TOUCHSCREEN_QUIET
write(diu_fd, "/Q:t\r", 5); //Un-Quiet the touch screen, now that we've responded to the user we want
#endif //to hear if they have any further input to give us...
redraw_flag = 0; //Clear the 'redraw required' flag
}
nfd = 0;
if(hub_fd >= 0)
{
fds[nfd].fd = hub_fd;
fds[nfd].events = POLLIN;
fds[nfd].revents = 0;
nfd++;
}
if(diu_fd >= 0)
{
fds[nfd].fd = diu_fd;
fds[nfd].events = POLLIN;
fds[nfd].revents = 0;
nfd++;
}
if(nfd > 0) //if we have any file descriptors, poll them
{
poll_return = poll(fds, nfd, POLL_TIMEOUT);
}
else //otherwise, whistle and look busy
{
poll_return = 0; //(this keeps us from buringing 100% cpu cycles if we don't have contact with either
sleep(1); //the IPC hub or the DIU hardware).
}
//--------------------------------------------------------------------------------------------------
if(poll_return < 1) //if poll didn't net us any work to do,
{
continue; //lets try again
}
for(i = 0; i < nfd; i++) //Loop through all polled file descriptors
{
if( fds[i].fd == diu_fd ) //If we're looking at the DIU...
{
if(fds[i].revents & (POLLHUP | POLLERR | POLLNVAL)) //if poll says our serial port has become bogus...
{
fprintf(stderr, "This is very odd... Poll returned flags %d on our serial port...\n", fds[i].revents);
close(diu_fd); //close it
diu_fd = -1; //flag it invalid
break; //and break out of the for loop to allow the while to cycle
}
if(fds[i].revents & POLLIN)
{
read_return = read(fds[i].fd, line, sizeof(line));
if(read_return > 0)
{
char *trav = line;
line[read_return] = '\0';
strip_crlf(line);
while(*trav && (*trav != '/') ) //advance until EOL or we hit our start sentinel
{
trav++;
}
//Check to see that our address header is intact...
if( (trav[0] == '/') && (trav[2] == ':') )
{
switch(trav[1])
{
case 'T': //-----------------------------------"/T:" means it's a touchscreen event
trav += 3; //advance past the header
retval = sscanf(trav, "%x,%x,%x", &tz, &tx, &ty);
if(retval == 3)
{
if(tz)
{
if(down_time == 0)
{
down_time = time(NULL);
}
else
{
if( (time(NULL) - down_time) > TS_CALIB_HOLD_TIME)
{
begin_touchscreen_calibration();
calibration = 1;
}
}
if(!calibration)
{
//printf("Touch at (%d, %d)\n", translate_ts_x(tx), translate_ts_y(ty));
if(process_pen(mt, translate_ts_x(tx), translate_ts_y(ty), 1) > 0)
{
#ifdef TOUCHSCREEN_QUIET
write(diu_fd, "/Q:T\r", 5);
#endif
redraw_flag = 1;
}
}
else
{
if(advance_touchscreen_calibration(tx, ty, tz))
{
calibration = 0;
redraw_flag = 1;
}
else
{
draw_touchscreen_calibration();
}
}
}
else
{
down_time = 0;
//printf("Touch Release\n");
if(!calibration)
{
if(process_pen(mt, 0,0,0) > 0)
{
#ifdef TOUCHSCREEN_QUIET
write(diu_fd, "/Q:T\r", 5);
#endif
redraw_flag = 1;
}
}
else
{
if(advance_touchscreen_calibration(tx, ty, tz))
{
calibration = 0;
redraw_flag = 1;
}
else
{
draw_touchscreen_calibration();
}
}
}
}
break;
case 'G': //-----------------------------------"/G:" means it is a new GPS input
trav += 3; //advance past the header
//If this GPS update constitutes a meaningful piece of data
if(update_gps(trav) > 0)
{
//and we have a connection to the IPC hub
if(hub_fd >= 0)
{
//Go and toss the data to any other modules who happen to care about GPS
prepare_message(&outgoing_msg, MAILBOX_GPS_STATUS, &my_gps_stat, sizeof(my_gps_stat));
send_message(hub_fd, &outgoing_msg);
}
last_stale_gps_check = now; //Remember that we did a stale GPS check as part of our update.
}
break;
case '*': //handle warnings
case '#': //debugs
case '!': //and errors
//If this DIU error/debug message has not run afoul of the rate limiting policy...
if( can_report_diu_error() )
{
format_log_message(&outgoing_msg, trav[1], "DIU Reports: %s", trav + 3); //send them all to the log server
send_message(hub_fd, &outgoing_msg);
if(trav[1] == '!') //but in the case of errors, send them to the driver too
{
format_driver_message(&outgoing_msg, trav[1], "DIU Reports: %s", trav + 3);
send_message(hub_fd, &outgoing_msg);
}
}
break;
default: //ignore any message addresses that we don't know what to do with
printf("Ignoring command \"%s\"\n", trav);
break;
}
}
else
{
// printf("Ignoring non-command line \"%s\"\n", trav);
}
}
else
{
fprintf(stderr, "Read from %s returned %d!\n", DRIVER_UI_PORT, read_return);
close(diu_fd); //close it
diu_fd = -1; //flag it invalid
break; //and break out of the for loop to allow the while to cycle
}
}
}
else if( fds[i].fd == hub_fd ) //If we're looking at the IPC hub...
{
if(fds[i].revents & (POLLHUP | POLLERR | POLLNVAL)) //if poll says our connection to the IPC hub has died...
{
fprintf(stderr, "The connection to the IPC hub has gone away...\n"); //complain
close(hub_fd); //close it
hub_fd = -1; //flag it dead
break; //break out of the for loop
}
if(fds[i].revents & POLLIN) //if we have mail in any of our mailboxes...
{
read_return = get_message(hub_fd, &incoming_msg);
if(read_return < 0)
{
fprintf(stderr, "The connection to the IPC hub has gone away...\n"); //complain
close(hub_fd); //close it
hub_fd = -1; //flag it dead
break; //break out of the for loop
}
else
{
message_callback_return msg_status;
msg_status = process_message(&incoming_msg);
}
}
}
}
}
set_color(255,255,255);
cls();
present_framebuffer();
close_framebuffer();
if(hub_fd >= 0)
{
close(hub_fd);
}
if(diu_fd >= 0)
{
write(diu_fd, "/C:----\r",8);
close(diu_fd);
}
return 0;
}