/*
* Copyright (c) 2019 Clementine Computing LLC.
*
* This file is part of PopuFare.
*
* PopuFare is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PopuFare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with PopuFare. If not, see .
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "common_defs.h"
#ifndef DEFAULT_BAUD
#define DEFAULT_BAUD (B115200)
#endif
// ------------------------------------------- This horrible blob of code goes and hunts for package install records and gathers
// ------------------------------------------- them into a sane data structure for display to the user in status/diagnostic screens.
#define PKG_SEARCH_DIR CONFIG_FILE_PATH
#define PATTERN_SUFFIX ".tgz.version"
#define CHECKSUM_SUFFIX ".tgz.checksum"
#define PATTTERN ("*" PATTERN_SUFFIX)
static int package_filter(const struct dirent *file) {
int match = fnmatch(PATTTERN, file->d_name, 0);
return !match;
}
int find_packages(package_signature *pkgs, int n) {
int i = 0;
int scandir_ret;
struct dirent **matchlist;
int j;
int match_len;
int suffix_len = strlen(PATTERN_SUFFIX);
FILE *f;
struct stat st;
char pathbuffer[1024];
// Look for any file that matches the pattern PATTERN (see package_filter above) and return into matchlist a pointer
// to and array of pointers to dirent structures for each directory entry that made the cut, sorted alphabetically
//
scandir_ret = scandir(PKG_SEARCH_DIR, &matchlist, package_filter, alphasort);
// If that seemed to work....
//
if( (scandir_ret >= 0) && (matchlist != NULL) ) {
// Walk the resultant list
//
for(i=0; i < scandir_ret; i++) {
// if we've filled our caller's buffer, break out now
//
if(i >= n) {
break;
}
// Go figure out how long the module name part is (it'll be the length of the filename minus the length of the suffix)
//
match_len = strlen(matchlist[i]->d_name) - suffix_len;
// If that would cause an overflow, truncate it...
//
if (match_len > (PKG_STRING_SIZE - 1)) {
match_len = PKG_STRING_SIZE - 1;
}
// Copy our package name
//
strncpy(pkgs[i].pkgname, matchlist[i]->d_name, match_len);
pkgs[i].pkgname[match_len] = '\0';
// (if fscanf fails, we want an empty string rather than random crap from memory...)
//
pkgs[i].pkgver[0] = '\0';
// generate the file name of the package version string...
//
snprintf(pathbuffer, sizeof(pathbuffer), "%s%s%s", PKG_SEARCH_DIR, pkgs[i].pkgname, PATTERN_SUFFIX);
// Go and read the contents of that into the pkgver part of our structure...
//
f = fopen(pathbuffer, "rb");
if (f) {
fscanf(f, PKG_STRING_FORMAT, pkgs[i].pkgver);
fclose(f);
}
pkgs[i].checksum[0] = '\0';
// generate the file name of the file containing the package checksum
//
snprintf(pathbuffer, sizeof(pathbuffer), "%s%s%s", PKG_SEARCH_DIR, pkgs[i].pkgname, CHECKSUM_SUFFIX);
// Go and read the contents of that into the checkdum part of our structure...
//
f = fopen(pathbuffer, "rb");
if (f) {
fscanf(f, PKG_STRING_FORMAT, pkgs[i].checksum);
fclose(f);
}
pkgs[i].installed = 0;
// Go and grab the mtime of the package install file
//
if (!stat(pathbuffer, &st)) {
pkgs[i].installed = st.st_mtime;
}
// Free this dirent
//
free(matchlist[i]);
}
// Clean up any leftovers
//
for (j = i; j < scandir_ret; j++) {
free(matchlist[i]);
}
// free the array of pointers
//
free(matchlist);
}
// return the number actually filled
//
return i;
}
// --------------------------------------------------------------------------------------------------
// This function checks the dropfile to see if the tunnel is up...
//
int tunnel_is_up() {
struct stat st;
int retval;
retval = stat(TUNNEL_DROPFILE, &st);
if (retval) {
return 0;
}
else {
return 1;
}
}
// This function checks the dropfile to see if the GPRS modem is up...
//
int gprs_is_up() {
struct stat st;
int retval;
retval = stat(GPRS_DROPFILE, &st);
if(retval) {
return 0;
}
else {
return 1;
}
}
// This function gets the equipment number from the appropriate config file
// If it cannot be gotten, it returns -1
//
int get_equip_num() {
FILE *f;
int num = -1;
f = fopen(EQUIPNUM_FILE, "rb");
if (f) {
fscanf(f,"%d",&num);
fclose(f);
}
else {
num = -1;
}
return num;
}
// This function sets the euipment number in the config file.
// if this operation fails, -1 is returned.
//
int set_equip_num(int num) {
FILE *f;
if ( (num < 1) || (num > MAX_EQUIPNUM) ) {
return -1;
}
f = fopen(EQUIPNUM_TEMPFILE, "wb");
if (f) {
fprintf(f,"%d\n", num);
fclose(f);
rename(EQUIPNUM_TEMPFILE, EQUIPNUM_FILE);
sync();
return 0;
}
return -1;
}
//
int get_server_desc(char *desc, int len) {
char svrname[LINE_BUFFER_SIZE];
FILE *f;
if (!desc) {
return -1;
}
if (len <= 0) {
return -1;
}
f = fopen(SERVER_DESC_FILE, "rb");
if (f) {
fgets(svrname, LINE_BUFFER_SIZE, f);
svrname[LINE_BUFFER_SIZE - 1] = '\0';
strip_crlf(svrname);
strncpy(desc, svrname, len);
desc[len - 1] = '\0';
return 0;
}
return -1;
}
int get_field(char *dest, char *src, int dest_len, int *eol_flag) {
int i,j;
int done = 0;
int eol = 0;
i = j = 0;
while ( ! done ) {
switch(src[i]) {
case '\0': // If we've hit the end of the input line
case '\n':
case '\r':
// cap off our destination string if there is room
//
if (j < dest_len) {
dest[j++] = '\0';
}
// set our internal End Of Line flag
//
eol = 1;
// set the done flag so we break out of the while
//
done = 1;
break;
// If we have hit a record boundary
//
case '\t':
// cap off our input line
//
if (j < dest_len) {
dest[j++] = '\0';
}
// Advance past this input character
//
i++;
// flag us as done
//
done = 1;
break;
// otherwise (for normal characters) just copy them if there is space
//
default:
if (j < dest_len) {
dest[j++] = src[i];
}
// and advance past them
//
i++;
break;
}
}
// If we have filled our line to capacity
//
if ( j == dest_len ) {
// Truncate it by 1 character to fit the terminating NUL
//
dest[dest_len - 1] = '\0';
}
// If the user has passed us a place to store our EOL flag,
//
if( eol_flag != NULL ) {
// store it there
//
*eol_flag = eol;
}
// Return the index of the next character to be consumed.
//
return i;
}
// magic hash function hashes english strings well enough for our needs
//
unsigned long long stringhash(char *string) {
unsigned long long hash = 5381;
int c;
while ((c = *string++)) {
/* hash * 33 + c */
hash = ((hash << 5) + hash) + c;
}
return hash;
}
int strip_crlf(char *buffer) {
char *src,*dst;
int count=0;
// Set both our source and destination pointers to the buffer in question
//
src=dst=buffer;
// While we still have unprocessed buffer bytes
//
while(*src) {
// If we encounter a CR or LF character
//
if((*src == '\r') || (*src == '\n')) {
// If the NEXT character is not another EOL character or a terminating nul
//
if( (src[1] != '\0') && (src[1] != '\r') && (src[1] != '\n') ) {
src++;
// replace the CR or LF with a space.
//
*dst++ = ' ';
count++;
continue;
}
// On the other hand, if what comes next is EOL or end of string,
//
else {
// just trim this character
//
src++;
continue;
}
}
// If this character isn't one of the special ones, just copy it.
//
*dst++ = *src++;
count++;
}
// Copy the terminating NUL
//
*dst++ = *src++;
return count;
}
int open_rs232_device(char *devname, int custom_baud, int linemode) {
struct termios tty={0};
int retval;
int fd;
// Open the specified character device READ/WRITE and not as a Controlling TTY
//
fd = open(devname, O_RDWR | O_NOCTTY);
if (fd < 0) {
#ifdef COMMON_PRINT_WARNING
fprintf(stderr, "Warning: Cannot open TTY %s\n", devname);
#endif
return -1;
}
// Try and fetch the TTY properties of the device
//
retval = ioctl(fd, TCGETS, &tty);
if (retval) {
#ifdef COMMON_PRINT_WARNING
fprintf(stderr, "Warning: Cannot get TTY attributes on %s. Not a TTY?\n", devname);
#endif
close(fd);
return -1;
}
if (custom_baud > 0) {
tty.c_cflag = custom_baud | CS8 | CREAD | CLOCAL;
}
else {
tty.c_cflag = DEFAULT_BAUD | CS8 | CREAD | CLOCAL;
}
if (linemode) {
tty.c_iflag = IGNBRK;
tty.c_oflag = 0;
tty.c_lflag = ICANON;
tty.c_line = 0;
tty.c_cc[VMIN] = 1; // minimum one character read
tty.c_cc[VTIME] = ACCUM_SECONDS * 10; // wait ACCUM_SECONDS without any further chars
// before giving up on the arrival of a newline.
// (VTIME is specified in deciseconds (who knows why...))
tty.c_cc[VEOL] = '\n'; // allow a newline to release the buffer
}
else {
tty.c_iflag = IGNBRK;
tty.c_oflag = 0;
tty.c_lflag = 0;
tty.c_line = 0;
tty.c_cc[VMIN] = 1;
tty.c_cc[VTIME] = 5;
}
// try and plunk our desired settings down on the device
//
retval = ioctl(fd, TCSETS, &tty);
if (retval) {
#ifdef COMMON_PRINT_WARNING
fprintf(stderr, "Warning: Cannot set TTY attributes on %s. Unsupported mode?\n", devname);
#endif
close(fd);
return -1;
}
// flush the serial port buffers to clean up any detritus that has accumulated before we got here
//
tcflush(fd, TCIOFLUSH);
return fd;
}
static int read_with_timeout(int fd, void *buffer, int n, int timeout) {
int retval;
struct pollfd fds[1];
fds[0].fd = fd;
fds[0].events = POLLIN;
retval = poll(fds, 1, timeout);
if (retval > 0) {
return read(fd, buffer, n);
}
else {
return retval;
}
}
static int init_device(int fd, device_test_vector *vec, char *diag) {
char buffer[1024] = {0};
int i;
int retval;
int len;
char *trav;
int timeout = DEVICE_TEST_TIMEOUT;
if (vec->init_timeout > 0) {
timeout = vec->init_timeout;
}
// If we were given an init string
//
if (vec->init_string != NULL) {
// calculate how long it is
//
len = strlen(vec->init_string);
// send it on its way
//
retval = write(fd, vec->init_string, len);
// if that didn't work
//
if (retval != len) {
// complain and fail
//
if (diag) {
snprintf(diag, DIAG_BUFFER_SIZE, "Cannot write init string to device.");
}
return -1;
}
}
i = 0;
while (i < vec->n_reply_lines) {
// Ask the kernel for a line from the TTY
//
retval = read_with_timeout(fd, buffer, sizeof(buffer), timeout);
// If we DID read something from the device, make sure it is correct
//
if(retval > 0) {
buffer[retval] = '\0';
strip_crlf(buffer);
trav = buffer;
// Skip any garbage before the start character
//
while (*trav && (*trav != '/')) {
trav++;
}
if (*trav == '\0') {
continue; // ignore blank lines
}
if ( (trav[0] == '/') && (trav[1] == '?') && (trav[2] == ':') ) {
// ignore device ID lines
//
continue;
}
// The order of these tests in importand. Short circuit keeps us from
// dereferencing expected_reply_lines if the first test fails
//
// If we have a pattern to test against
//
if ( (vec->reply_strings != NULL) && (vec->reply_strings[i] != NULL) ) {
if (strcmp(trav, vec->reply_strings[i])) {
if (diag) {
snprintf(diag, DIAG_BUFFER_SIZE, "Read init reply line %d from device, expected \"%s\" but got \"%s\"", i, vec->reply_strings[i], trav);
}
return -1;
}
}
}
// If we DIDN'T read anything from the device...
//
else {
// Complain
//
if (diag) {
snprintf(diag, DIAG_BUFFER_SIZE, "Reading init reply from device timed out waiting for line %d", i);
}
// And fail
//
return -1;
}
i++;
}
return 0;
}
int test_and_init_device(int fd, device_test_vector *vec, char *diag) {
char buffer[DEV_INIT_BUFFER_SIZE] = {0};
char module_id[DEV_INIT_BUFFER_SIZE] = {0};
int tries = DEVICE_TEST_TRIES;
int timeout = DEVICE_TEST_TIMEOUT;
int retval;
char *trav;
if (vec == NULL) {
return -1;
}
if (vec->dev_id == NULL) {
return -1;
}
if (vec->init_tries > 0) {
tries = vec->init_tries;
}
if (vec->init_timeout > 0) {
timeout = vec->init_timeout;
}
// We want to iterate through DEVICE_TEST_TRIES tries at getting a valid line from the device
//
do {
// Send a CR to stimulate the device to spit out its help message
//
write(fd,"\r", 1);
// Ask the kernel for a line from the TTY
//
retval = read_with_timeout(fd, buffer, sizeof(buffer), timeout);
// If we actually got a line of data
//
if (retval > 0) {
buffer[retval] = '\0';
strip_crlf(buffer);
// Start examining our buffer
//
trav = buffer;
// Skip any garbage before the start character
//
while (*trav && (*trav != '/')) {
trav++;
}
// See if it is our Device ID / help line...
//
if ( (trav[0] == '/') && (trav[1] == '?') && (trav[2] == ':') ) {
// Skip the header and go to the body
//
trav += 3;
// Look for our module ID string
//
retval = sscanf(trav, " ?=%s", module_id);
if (retval < 1) {
// Look for our module ID string without leading space
//
retval = sscanf(trav, "?=%s", module_id);
}
// If we have found id
//
if (retval == 1) {
// See if it is the correct one
//
if (!strcmp(module_id, vec->dev_id)) {
// If so, pass on our diagnostic message if we have a place to
//
if (diag) {
snprintf(diag, DIAG_BUFFER_SIZE, "Device connected OK");
}
return init_device(fd, vec, diag); // Perform initialization and return the status of that operation
}
// Otherwise, if it is NOT the one we are expecting
//
else {
// Complain if we have a place to
//
if (diag) {
snprintf(diag, DIAG_BUFFER_SIZE, "Device present: Expecting: \"%s\" Got: \"%s\"", vec->dev_id, module_id);
}
return -2; // Return a distinct failure code
}
}
}
// If we DIDN'T get the line we were looking for, pretend it was blank so we'll try again...
//
else {
// This pretends the received line was black.
//
retval = 0;
}
// if we got 0 bytes or EINTR from the alarm firing
//
}
// While we still have tries and a previous try didn't work
//
} while ( (retval <= 0) && ( --tries > 0) );
if (diag) {
snprintf(diag, DIAG_BUFFER_SIZE, "Could not get reply from device");
}
return -1;
}
// ========================================================================================================
// ------------------------------- WATCHDOG TIMER and other SIGNAL HANDLERS -------------------------------
// ========================================================================================================
// volatile int hup_request_status = 0;
//
volatile sig_atomic_t hup_request_status = 0;
void request_hup(char *fmt, ...) {
va_list ap;
hup_request_status = 1;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
}
// Our signal handlers and standard message handlers will OR these bits into exit_request_status
//
volatile int exit_request_status = 0;
static int exit_signal_counter = 0;
void request_polite_exit(int reason, char *fmt, ...) {
va_list ap;
exit_request_status |= reason;
if (reason) {
exit_signal_counter++;
}
if (exit_request_status & EXIT_REQUEST_CRASH) {
va_start(ap, fmt);
vsyslog(LOG_ERR, fmt, ap);
va_end(ap);
exit(EX_SOFTWARE);
}
if (exit_signal_counter >= MAX_POLITE_EXIT_REQUESTS) {
va_start(ap, fmt);
vsyslog(LOG_NOTICE, fmt, ap);
va_end(ap);
exit(SIGTERM);
}
}
static void watchdog_handler(int signum, siginfo_t *info, void *data) {
request_polite_exit(EXIT_REQUEST_CRASH, "Watchdog timer has expired!");
}
static void term_int_handler(int signum, siginfo_t *info, void *data) {
request_polite_exit(EXIT_REQUEST_INT_TERM, "Received signal %d", signum);
}
static void hard_crash_handler(int signum, siginfo_t *info, void *data) {
switch(signum) {
case SIGSEGV:
request_polite_exit(EXIT_REQUEST_CRASH, "Segmentation fault at virtual address %p", info->si_addr);
break;
case SIGILL:
request_polite_exit(EXIT_REQUEST_CRASH, "Illegal instruction at virtual address %p", info->si_addr);
break;
case SIGFPE:
request_polite_exit(EXIT_REQUEST_CRASH, "Floating point exception at virtual address %p", info->si_addr);
break;
case SIGBUS:
request_polite_exit(EXIT_REQUEST_CRASH, "SIGBUS (hardware error!) at address %p", info->si_addr);
break;
default:
request_polite_exit(EXIT_REQUEST_CRASH, "Caught Signal %d", signum);
break;
}
}
void configure_signal_handlers(char *procname) {
struct sigaction sa = {{0}};
openlog(procname, LOG_CONS | LOG_PERROR, LOG_USER);
#ifdef USE_WATCHDOG_ALARM
sa.sa_sigaction = watchdog_handler;
sa.sa_flags = SA_SIGINFO;
sigfillset(&sa.sa_mask);
sigaction(SIGALRM, &sa, NULL);
RESET_WATCHDOG();
#endif
// Install our "boy did we ever fuck up this time" signal handler
// to trap segmentation faults, illegal instructions, divides by zero,
// and things like RAM chips popping off a running board (SIGBUS).
//
sa.sa_sigaction = hard_crash_handler;
sa.sa_flags = SA_SIGINFO;
sigaction(SIGSEGV, &sa, NULL);
sigaction(SIGILL, &sa, NULL);
sigaction(SIGFPE, &sa, NULL);
sigaction(SIGBUS, &sa, NULL);
// Install our polite exit handler...
//
sa.sa_sigaction = term_int_handler;
sa.sa_flags = SA_SIGINFO | SA_RESTART; // Allow interrupted I/O calls to finish to facilitate clean exit
sigaction(SIGTERM, &sa, NULL);
sigaction(SIGINT, &sa, NULL);
}
// ------------------