| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- How to hack TinyScheme
- ----------------------
- TinyScheme is easy to learn and modify. It is structured like a
- meta-interpreter, only it is written in C. All data are Scheme
- objects, which facilitates both understanding/modifying the
- code and reifying the interpreter workings.
- In place of a dry description, we will pace through the addition
- of a useful new datatype: garbage-collected memory blocks.
- The interface will be:
- (make-block <n> [<fill>]) makes a new block of the specified size
- optionally filling it with a specified byte
- (block? <obj>)
- (block-length <block>)
- (block-ref <block> <index>) retrieves byte at location
- (block-set! <block> <index> <byte>) modifies byte at location
-
- In the sequel, lines that begin with '>' denote lines to add to the
- code. Lines that begin with '|' are just citations of existing code.
- First of all, we need to assign a typeid to our new type. Typeids
- in TinyScheme are small integers declared in an enum, very close to
- the top; it begins with T_STRING. Add a new one at the end, say
- T_MEMBLOCK. There can be at most 31 types, but you don't have to
- worry about that limit yet.
- | ...
- | T_PORT,
- | T_VECTOR, /* remember to add a comma to the preceding item! */
- | T_MEMBLOCK
- } };
- Then, some helper macros would be useful. Go to where isstring() and
- the rest are defined and define:
- > int ismemblock(pointer p) { return (type(p)==T_MEMBLOCK); }
- This actually is a function, because it is meant to be exported by
- scheme.h. If no foreign function will ever manipulate a memory block,
- you can instead define it as a macro
- > #define ismemblock(p) (type(p)==T_MEMBLOCK)
- Then we make space for the new type in the main data structure:
- struct cell. As it happens, the _string part of the union _object
- (that is used to hold character strings) has two fields that suit us:
- | struct {
- | char *_svalue;
- | int _keynum;
- | } _string;
- We can use _svalue to hold the actual pointer and _keynum to hold its
- length. If we couln't reuse existing fields, we could always add other
- alternatives in union _object.
- We then procede to write the function that actually makes a new block.
- For conformance reasons, we name it mk_memblock
- > static pointer mk_memblock(scheme *sc, int len, char fill) {
- > pointer x;
- > char *p=(char*)sc->malloc(len);
- >
- > if(p==0) {
- > return sc->NIL;
- > }
- > x = get_cell(sc, sc->NIL, sc->NIL);
- >
- > typeflag(x) = T_MEMBLOCK|T_ATOM;
- > strvalue(x)=p;
- > keynum(x)=len;
- > memset(p,fill,len);
- > return (x);
- > }
- The memory used by the MEMBLOCK will have to be freed when the cell
- is reclaimed during garbage collection. There is a placeholder for
- that staff, function finalize_cell(), currently handling strings only.
- | static void finalize_cell(scheme *sc, pointer a) {
- | if(isstring(a)) {
- | sc->free(strvalue(a));
- | }
- > else if(ismemblock(a)) {
- > sc->free(strvalue(x));
- > }
- | }
- There are no MEMBLOCK literals, so we don't concern ourselfs with
- the READER part (yet!). We must cater to the PRINTER, though. We
- add one case more in printatom().
- | } else if (iscontinuation(l)) {
- | p = "#<CONTINUATION>";
- > } else if (ismemblock(l)) {
- > p = "#<MEMORY BLOCK>";
- | }
- Whenever a MEMBLOCK is displayed, it will look like that.
- Now, we must add the interface functions: constructor, predicate,
- accessor, modifier. We must in fact create new op-codes for the virtual
- machine underlying TinyScheme. There is a huge enum with OP_XXX values.
- That's where the op-codes are declared. For reasons of cohesion, we add
- the new op-codes right after those for vectors:
- | OP_VECSET,
- > OP_MKBLOCK,
- > OP_MEMBLOCKP,
- > OP_BLOCKLEN,
- > OP_BLOCKREF,
- > OP_BLOCKSET,
- | OP_NOT,
- We add the predicate along the other predicates:
- | OP_VECTORP,
- > OP_BLOCKP,
- | OP_EQ,
- Op-codes are really just tags for a huge C switch, only this switch
- is broke up in a number of different opexe_X functions. The
- correspondence is made in table "dispatch_table". There, we assign
- the new op-codes to opexe_2, where the equivalent ones for vectors
- are situated. We also assign a name for them, and specify the minimum
- and maximum arity. INF_ARG as a maximum arity means "unlimited".
- | {opexe_2, "vector-set!", 3, 3}, /* OP_VECSET */
- > {opexe_2, "make-block", 1, 2}, /* OP_MKBLOCK */
- > {opexe_2, "block-length", 1, 1}, /* OP_BLOCKLEN */
- > {opexe_2, "block-ref", 2, 2}, /* OP_BLOCKREF */
- > {opexe_2, "block-set!",3 ,3}, /* OP_BLOCKSET */
- The predicate goes with the other predicates, in opexe_3.
- | {opexe_3, "vector?", 1, 1}, /* OP_VECTORP, */
- > {opexe_3, "block?", 1, 1}, /* OP_BLOCKP, */
- All that remains is to write the actual processing in opexe_2, right
- after OP_VECSET.
- > case OP_MKBLOCK: { /* make-block */
- > int fill=0;
- > int len;
- >
- > if(!isnumber(car(sc->args))) {
- > Error_1(sc,"make-block: not a number:",car(sc->args));
- > }
- > len=ivalue(car(sc->args));
- > if(len<=0) {
- > Error_1(sc,"make-block: not positive:",car(sc->args));
- > }
- >
- > if(cdr(sc->args)!=sc->NIL) {
- > if(!isnumber(cadr(sc->args)) || ivalue(cadr(sc->args))<0) {
- > Error_1(sc,"make-block: not a positive number:",cadr(sc->args));
- > }
- > fill=charvalue(cadr(sc->args))%255;
- > }
- > s_return(sc,mk_memblock(sc,len,(char)fill));
- > }
- >
- > case OP_BLOCKLEN: /* block-length */
- > if(!ismemblock(car(sc->args))) {
- > Error_1(sc,"block-length: not a memory block:",car(sc->args));
- > }
- > s_return(sc,mk_integer(sc,keynum(car(sc->args))));
- >
- > case OP_BLOCKREF: { /* block-ref */
- > char *str;
- > int index;
- >
- > if(!ismemblock(car(sc->args))) {
- > Error_1(sc,"block-ref: not a memory block:",car(sc->args));
- > }
- > str=strvalue(car(sc->args));
- >
- > if(cdr(sc->args)==sc->NIL) {
- > Error_0(sc,"block-ref: needs two arguments");
- > }
- > if(!isnumber(cadr(sc->args))) {
- > Error_1(sc,"block-ref: not a number:",cadr(sc->args));
- > }
- > index=ivalue(cadr(sc->args));
- >
- > if(index<0 || index>=keynum(car(sc->args))) {
- > Error_1(sc,"block-ref: out of bounds:",cadr(sc->args));
- > }
- >
- > s_return(sc,mk_integer(sc,str[index]));
- > }
- >
- > case OP_BLOCKSET: { /* block-set! */
- > char *str;
- > int index;
- > int c;
- >
- > if(!ismemblock(car(sc->args))) {
- > Error_1(sc,"block-set!: not a memory block:",car(sc->args));
- > }
- > if(isimmutable(car(sc->args))) {
- > Error_1(sc,"block-set!: unable to alter immutable memory block:",car(sc->args));
- > }
- > str=strvalue(car(sc->args));
- >
- > if(cdr(sc->args)==sc->NIL) {
- > Error_0(sc,"block-set!: needs three arguments");
- > }
- > if(!isnumber(cadr(sc->args))) {
- > Error_1(sc,"block-set!: not a number:",cadr(sc->args));
- > }
- > index=ivalue(cadr(sc->args));
- > if(index<0 || index>=keynum(car(sc->args))) {
- > Error_1(sc,"block-set!: out of bounds:",cadr(sc->args));
- > }
- >
- > if(cddr(sc->args)==sc->NIL) {
- > Error_0(sc,"block-set!: needs three arguments");
- > }
- > if(!isinteger(caddr(sc->args))) {
- > Error_1(sc,"block-set!: not an integer:",caddr(sc->args));
- > }
- > c=ivalue(caddr(sc->args))%255;
- >
- > str[index]=(char)c;
- > s_return(sc,car(sc->args));
- > }
- Same for the predicate in opexe_3.
- | case OP_VECTORP: /* vector? */
- | s_retbool(isvector(car(sc->args)));
- > case OP_BLOCKP: /* block? */
- > s_retbool(ismemblock(car(sc->args)));
|