init.scm 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607
  1. ; Initialization file for TinySCHEME 1.39
  2. ;
  3. ; Copyright (c) 2000, Dimitrios Souflis
  4. ; All rights reserved.
  5. ;
  6. ; Redistribution and use in source and binary forms, with or without
  7. ; modification, are permitted provided that the following conditions are
  8. ; met:
  9. ;
  10. ; Redistributions of source code must retain the above copyright notice,
  11. ; this list of conditions and the following disclaimer.
  12. ;
  13. ; Redistributions in binary form must reproduce the above copyright
  14. ; notice, this list of conditions and the following disclaimer in the
  15. ; documentation and/or other materials provided with the distribution.
  16. ;
  17. ; Neither the name of Dimitrios Souflis nor the names of the
  18. ; contributors may be used to endorse or promote products derived from
  19. ; this software without specific prior written permission.
  20. ;
  21. ; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  22. ; ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  23. ; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  24. ; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
  25. ; CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  26. ; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  27. ; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  28. ; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  29. ; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  30. ; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  31. ; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  32. ;
  33. ; Per R5RS, up to four deep compositions should be defined
  34. (define (caar x) (car (car x)))
  35. (define (cadr x) (car (cdr x)))
  36. (define (cdar x) (cdr (car x)))
  37. (define (cddr x) (cdr (cdr x)))
  38. (define (caaar x) (car (car (car x))))
  39. (define (caadr x) (car (car (cdr x))))
  40. (define (cadar x) (car (cdr (car x))))
  41. (define (caddr x) (car (cdr (cdr x))))
  42. (define (cdaar x) (cdr (car (car x))))
  43. (define (cdadr x) (cdr (car (cdr x))))
  44. (define (cddar x) (cdr (cdr (car x))))
  45. (define (cdddr x) (cdr (cdr (cdr x))))
  46. (define (caaaar x) (car (car (car (car x)))))
  47. (define (caaadr x) (car (car (car (cdr x)))))
  48. (define (caadar x) (car (car (cdr (car x)))))
  49. (define (caaddr x) (car (car (cdr (cdr x)))))
  50. (define (cadaar x) (car (cdr (car (car x)))))
  51. (define (cadadr x) (car (cdr (car (cdr x)))))
  52. (define (caddar x) (car (cdr (cdr (car x)))))
  53. (define (cadddr x) (car (cdr (cdr (cdr x)))))
  54. (define (cdaaar x) (cdr (car (car (car x)))))
  55. (define (cdaadr x) (cdr (car (car (cdr x)))))
  56. (define (cdadar x) (cdr (car (cdr (car x)))))
  57. (define (cdaddr x) (cdr (car (cdr (cdr x)))))
  58. (define (cddaar x) (cdr (cdr (car (car x)))))
  59. (define (cddadr x) (cdr (cdr (car (cdr x)))))
  60. (define (cdddar x) (cdr (cdr (cdr (car x)))))
  61. (define (cddddr x) (cdr (cdr (cdr (cdr x)))))
  62. (macro (unless form)
  63. `(if (not ,(cadr form)) (begin ,@(cddr form))))
  64. (macro (when form)
  65. `(if ,(cadr form) (begin ,@(cddr form))))
  66. ; DEFINE-MACRO Contributed by Andy Gaynor
  67. (macro (define-macro dform)
  68. (if (symbol? (cadr dform))
  69. `(macro ,@(cdr dform))
  70. (let ((form (gensym)))
  71. `(macro (,(caadr dform) ,form)
  72. (apply (lambda ,(cdadr dform) ,@(cddr dform)) (cdr ,form))))))
  73. ; Utilities for math. Notice that inexact->exact is primitive,
  74. ; but exact->inexact is not.
  75. (define exact? integer?)
  76. (define (inexact? x) (and (real? x) (not (integer? x))))
  77. (define (even? n) (= (remainder n 2) 0))
  78. (define (odd? n) (not (= (remainder n 2) 0)))
  79. (define (zero? n) (= n 0))
  80. (define (positive? n) (> n 0))
  81. (define (negative? n) (< n 0))
  82. (define complex? number?)
  83. (define rational? real?)
  84. (define (abs n) (if (>= n 0) n (- n)))
  85. (define (exact->inexact n) (* n 1.0))
  86. (define (<> n1 n2) (not (= n1 n2)))
  87. (define (max . lst)
  88. (foldr (lambda (a b) (if (> a b) a b)) (car lst) (cdr lst)))
  89. (define (min . lst)
  90. (foldr (lambda (a b) (if (< a b) a b)) (car lst) (cdr lst)))
  91. (define (succ x) (+ x 1))
  92. (define (pred x) (- x 1))
  93. (define (gcd a b)
  94. (let ((aa (abs a))
  95. (bb (abs b)))
  96. (if (= bb 0)
  97. aa
  98. (gcd bb (remainder aa bb)))))
  99. (define (lcm a b)
  100. (if (or (= a 0) (= b 0))
  101. 0
  102. (abs (* (quotient a (gcd a b)) b))))
  103. (define call/cc call-with-current-continuation)
  104. (define (string . charlist)
  105. (list->string charlist))
  106. (define (list->string charlist)
  107. (let* ((len (length charlist))
  108. (newstr (make-string len))
  109. (fill-string!
  110. (lambda (str i len charlist)
  111. (if (= i len)
  112. str
  113. (begin (string-set! str i (car charlist))
  114. (fill-string! str (+ i 1) len (cdr charlist)))))))
  115. (fill-string! newstr 0 len charlist)))
  116. (define (string-fill! s e)
  117. (let ((n (string-length s)))
  118. (let loop ((i 0))
  119. (if (= i n)
  120. s
  121. (begin (string-set! s i e) (loop (succ i)))))))
  122. (define (string->list s)
  123. (let loop ((n (pred (string-length s))) (l '()))
  124. (if (= n -1)
  125. l
  126. (loop (pred n) (cons (string-ref s n) l)))))
  127. (define (string-copy str)
  128. (string-append str))
  129. (define (string->anyatom str pred)
  130. (let* ((a (string->atom str)))
  131. (if (pred a) a
  132. (error "string->xxx: not a xxx" a))))
  133. (define (string->number str) (string->anyatom str number?))
  134. (define (anyatom->string n pred)
  135. (if (pred n)
  136. (atom->string n)
  137. (error "xxx->string: not a xxx" n)))
  138. (define (number->string n) (anyatom->string n number?))
  139. (define (char-cmp? cmp a b)
  140. (cmp (char->integer a) (char->integer b)))
  141. (define (char-ci-cmp? cmp a b)
  142. (cmp (char->integer (char-downcase a)) (char->integer (char-downcase b))))
  143. (define (char=? a b) (char-cmp? = a b))
  144. (define (char<? a b) (char-cmp? < a b))
  145. (define (char>? a b) (char-cmp? > a b))
  146. (define (char<=? a b) (char-cmp? <= a b))
  147. (define (char>=? a b) (char-cmp? >= a b))
  148. (define (char-ci=? a b) (char-ci-cmp? = a b))
  149. (define (char-ci<? a b) (char-ci-cmp? < a b))
  150. (define (char-ci>? a b) (char-ci-cmp? > a b))
  151. (define (char-ci<=? a b) (char-ci-cmp? <= a b))
  152. (define (char-ci>=? a b) (char-ci-cmp? >= a b))
  153. ; Note the trick of returning (cmp x y)
  154. (define (string-cmp? chcmp cmp a b)
  155. (let ((na (string-length a)) (nb (string-length b)))
  156. (let loop ((i 0))
  157. (cond
  158. ((= i na)
  159. (if (= i nb) (cmp 0 0) (cmp 0 1)))
  160. ((= i nb)
  161. (cmp 1 0))
  162. ((chcmp = (string-ref a i) (string-ref b i))
  163. (loop (succ i)))
  164. (else
  165. (chcmp cmp (string-ref a i) (string-ref b i)))))))
  166. (define (string=? a b) (string-cmp? char-cmp? = a b))
  167. (define (string<? a b) (string-cmp? char-cmp? < a b))
  168. (define (string>? a b) (string-cmp? char-cmp? > a b))
  169. (define (string<=? a b) (string-cmp? char-cmp? <= a b))
  170. (define (string>=? a b) (string-cmp? char-cmp? >= a b))
  171. (define (string-ci=? a b) (string-cmp? char-ci-cmp? = a b))
  172. (define (string-ci<? a b) (string-cmp? char-ci-cmp? < a b))
  173. (define (string-ci>? a b) (string-cmp? char-ci-cmp? > a b))
  174. (define (string-ci<=? a b) (string-cmp? char-ci-cmp? <= a b))
  175. (define (string-ci>=? a b) (string-cmp? char-ci-cmp? >= a b))
  176. (define (list . x) x)
  177. (define (foldr f x lst)
  178. (if (null? lst)
  179. x
  180. (foldr f (f x (car lst)) (cdr lst))))
  181. (define (unzip1-with-cdr . lists)
  182. (unzip1-with-cdr-iterative lists '() '()))
  183. (define (unzip1-with-cdr-iterative lists cars cdrs)
  184. (if (null? lists)
  185. (cons cars cdrs)
  186. (let ((car1 (caar lists))
  187. (cdr1 (cdar lists)))
  188. (unzip1-with-cdr-iterative
  189. (cdr lists)
  190. (append cars (list car1))
  191. (append cdrs (list cdr1))))))
  192. (define (map proc . lists)
  193. (if (null? lists)
  194. (apply proc)
  195. (if (null? (car lists))
  196. '()
  197. (let* ((unz (apply unzip1-with-cdr lists))
  198. (cars (car unz))
  199. (cdrs (cdr unz)))
  200. (cons (apply proc cars) (apply map (cons proc cdrs)))))))
  201. (define (for-each proc . lists)
  202. (if (null? lists)
  203. (apply proc)
  204. (if (null? (car lists))
  205. #t
  206. (let* ((unz (apply unzip1-with-cdr lists))
  207. (cars (car unz))
  208. (cdrs (cdr unz)))
  209. (apply proc cars) (apply map (cons proc cdrs))))))
  210. (define (list-tail x k)
  211. (if (zero? k)
  212. x
  213. (list-tail (cdr x) (- k 1))))
  214. (define (list-ref x k)
  215. (car (list-tail x k)))
  216. (define (last-pair x)
  217. (if (pair? (cdr x))
  218. (last-pair (cdr x))
  219. x))
  220. (define (head stream) (car stream))
  221. (define (tail stream) (force (cdr stream)))
  222. (define (vector-equal? x y)
  223. (and (vector? x) (vector? y) (= (vector-length x) (vector-length y))
  224. (let ((n (vector-length x)))
  225. (let loop ((i 0))
  226. (if (= i n)
  227. #t
  228. (and (equal? (vector-ref x i) (vector-ref y i))
  229. (loop (succ i))))))))
  230. (define (list->vector x)
  231. (apply vector x))
  232. (define (vector-fill! v e)
  233. (let ((n (vector-length v)))
  234. (let loop ((i 0))
  235. (if (= i n)
  236. v
  237. (begin (vector-set! v i e) (loop (succ i)))))))
  238. (define (vector->list v)
  239. (let loop ((n (pred (vector-length v))) (l '()))
  240. (if (= n -1)
  241. l
  242. (loop (pred n) (cons (vector-ref v n) l)))))
  243. ;; The following quasiquote macro is due to Eric S. Tiedemann.
  244. ;; Copyright 1988 by Eric S. Tiedemann; all rights reserved.
  245. ;;
  246. ;; Subsequently modified to handle vectors: D. Souflis
  247. (macro
  248. quasiquote
  249. (lambda (l)
  250. (define (mcons f l r)
  251. (if (and (pair? r)
  252. (eq? (car r) 'quote)
  253. (eq? (car (cdr r)) (cdr f))
  254. (pair? l)
  255. (eq? (car l) 'quote)
  256. (eq? (car (cdr l)) (car f)))
  257. (if (or (procedure? f) (number? f) (string? f))
  258. f
  259. (list 'quote f))
  260. (if (eqv? l vector)
  261. (apply l (eval r))
  262. (list 'cons l r)
  263. )))
  264. (define (mappend f l r)
  265. (if (or (null? (cdr f))
  266. (and (pair? r)
  267. (eq? (car r) 'quote)
  268. (eq? (car (cdr r)) '())))
  269. l
  270. (list 'append l r)))
  271. (define (foo level form)
  272. (cond ((not (pair? form))
  273. (if (or (procedure? form) (number? form) (string? form))
  274. form
  275. (list 'quote form))
  276. )
  277. ((eq? 'quasiquote (car form))
  278. (mcons form ''quasiquote (foo (+ level 1) (cdr form))))
  279. (#t (if (zero? level)
  280. (cond ((eq? (car form) 'unquote) (car (cdr form)))
  281. ((eq? (car form) 'unquote-splicing)
  282. (error "Unquote-splicing wasn't in a list:"
  283. form))
  284. ((and (pair? (car form))
  285. (eq? (car (car form)) 'unquote-splicing))
  286. (mappend form (car (cdr (car form)))
  287. (foo level (cdr form))))
  288. (#t (mcons form (foo level (car form))
  289. (foo level (cdr form)))))
  290. (cond ((eq? (car form) 'unquote)
  291. (mcons form ''unquote (foo (- level 1)
  292. (cdr form))))
  293. ((eq? (car form) 'unquote-splicing)
  294. (mcons form ''unquote-splicing
  295. (foo (- level 1) (cdr form))))
  296. (#t (mcons form (foo level (car form))
  297. (foo level (cdr form)))))))))
  298. (foo 0 (car (cdr l)))))
  299. ;;;;; atom? and equal? written by a.k
  300. ;;;; atom?
  301. (define (atom? x)
  302. (not (pair? x)))
  303. ;;;; equal?
  304. (define (equal? x y)
  305. (cond
  306. ((pair? x)
  307. (and (pair? y)
  308. (equal? (car x) (car y))
  309. (equal? (cdr x) (cdr y))))
  310. ((vector? x)
  311. (and (vector? y) (vector-equal? x y)))
  312. ((string? x)
  313. (and (string? y) (string=? x y)))
  314. (else (eqv? x y))))
  315. ;;;; (do ((var init inc) ...) (endtest result ...) body ...)
  316. ;;
  317. (macro do
  318. (lambda (do-macro)
  319. (apply (lambda (do vars endtest . body)
  320. (let ((do-loop (gensym)))
  321. `(letrec ((,do-loop
  322. (lambda ,(map (lambda (x)
  323. (if (pair? x) (car x) x))
  324. `,vars)
  325. (if ,(car endtest)
  326. (begin ,@(cdr endtest))
  327. (begin
  328. ,@body
  329. (,do-loop
  330. ,@(map (lambda (x)
  331. (cond
  332. ((not (pair? x)) x)
  333. ((< (length x) 3) (car x))
  334. (else (car (cdr (cdr x))))))
  335. `,vars)))))))
  336. (,do-loop
  337. ,@(map (lambda (x)
  338. (if (and (pair? x) (cdr x))
  339. (car (cdr x))
  340. '()))
  341. `,vars)))))
  342. do-macro)))
  343. ;;;; generic-member
  344. (define (generic-member cmp obj lst)
  345. (cond
  346. ((null? lst) #f)
  347. ((cmp obj (car lst)) lst)
  348. (else (generic-member cmp obj (cdr lst)))))
  349. (define (memq obj lst)
  350. (generic-member eq? obj lst))
  351. (define (memv obj lst)
  352. (generic-member eqv? obj lst))
  353. (define (member obj lst)
  354. (generic-member equal? obj lst))
  355. ;;;; generic-assoc
  356. (define (generic-assoc cmp obj alst)
  357. (cond
  358. ((null? alst) #f)
  359. ((cmp obj (caar alst)) (car alst))
  360. (else (generic-assoc cmp obj (cdr alst)))))
  361. (define (assq obj alst)
  362. (generic-assoc eq? obj alst))
  363. (define (assv obj alst)
  364. (generic-assoc eqv? obj alst))
  365. (define (assoc obj alst)
  366. (generic-assoc equal? obj alst))
  367. (define (acons x y z) (cons (cons x y) z))
  368. ;;;; Utility to ease macro creation
  369. (define (macro-expand form)
  370. ((eval (get-closure-code (eval (car form)))) form))
  371. ;;;; Handy for imperative programs
  372. ;;;; Used as: (define-with-return (foo x y) .... (return z) ...)
  373. (macro (define-with-return form)
  374. `(define ,(cadr form)
  375. (call/cc (lambda (return) ,@(cddr form)))))
  376. ;;;; Simple exception handling
  377. ;
  378. ; Exceptions are caught as follows:
  379. ;
  380. ; (catch (do-something to-recover and-return meaningful-value)
  381. ; (if-something goes-wrong)
  382. ; (with-these calls))
  383. ;
  384. ; "Catch" establishes a scope spanning multiple call-frames
  385. ; until another "catch" is encountered.
  386. ;
  387. ; Exceptions are thrown with:
  388. ;
  389. ; (throw "message")
  390. ;
  391. ; If used outside a (catch ...), reverts to (error "message)
  392. (define *handlers* (list))
  393. (define (push-handler proc)
  394. (set! *handlers* (cons proc *handlers*)))
  395. (define (pop-handler)
  396. (let ((h (car *handlers*)))
  397. (set! *handlers* (cdr *handlers*))
  398. h))
  399. (define (more-handlers?)
  400. (pair? *handlers*))
  401. (define (throw . x)
  402. (if (more-handlers?)
  403. (apply (pop-handler))
  404. (apply error x)))
  405. (macro (catch form)
  406. (let ((label (gensym)))
  407. `(call/cc (lambda (exit)
  408. (push-handler (lambda () (exit ,(cadr form))))
  409. (let ((,label (begin ,@(cddr form))))
  410. (pop-handler)
  411. ,label)))))
  412. (define *error-hook* throw)
  413. ;;;;; Definition of MAKE-ENVIRONMENT, to be used with two-argument EVAL
  414. (macro (make-environment form)
  415. `(apply (lambda ()
  416. ,@(cdr form)
  417. (current-environment))))
  418. (define-macro (eval-polymorphic x . envl)
  419. (display envl)
  420. (let* ((env (if (null? envl) (current-environment) (eval (car envl))))
  421. (xval (eval x env)))
  422. (if (closure? xval)
  423. (make-closure (get-closure-code xval) env)
  424. xval)))
  425. ; Redefine this if you install another package infrastructure
  426. ; Also redefine 'package'
  427. (define *colon-hook* eval)
  428. ;;;;; I/O
  429. (define (input-output-port? p)
  430. (and (input-port? p) (output-port? p)))
  431. (define (close-port p)
  432. (cond
  433. ((input-output-port? p) (close-input-port (close-output-port p)))
  434. ((input-port? p) (close-input-port p))
  435. ((output-port? p) (close-output-port p))
  436. (else (throw "Not a port" p))))
  437. (define (call-with-input-file s p)
  438. (let ((inport (open-input-file s)))
  439. (if (eq? inport #f)
  440. #f
  441. (let ((res (p inport)))
  442. (close-input-port inport)
  443. res))))
  444. (define (call-with-output-file s p)
  445. (let ((outport (open-output-file s)))
  446. (if (eq? outport #f)
  447. #f
  448. (let ((res (p outport)))
  449. (close-output-port outport)
  450. res))))
  451. (define (with-input-from-file s p)
  452. (let ((inport (open-input-file s)))
  453. (if (eq? inport #f)
  454. #f
  455. (let ((prev-inport (current-input-port)))
  456. (set-input-port inport)
  457. (let ((res (p)))
  458. (close-input-port inport)
  459. (set-input-port prev-inport)
  460. res)))))
  461. (define (with-output-to-file s p)
  462. (let ((outport (open-output-file s)))
  463. (if (eq? outport #f)
  464. #f
  465. (let ((prev-outport (current-output-port)))
  466. (set-output-port outport)
  467. (let ((res (p)))
  468. (close-output-port outport)
  469. (set-output-port prev-outport)
  470. res)))))
  471. (define (with-input-output-from-to-files si so p)
  472. (let ((inport (open-input-file si))
  473. (outport (open-input-file so)))
  474. (if (not (and inport outport))
  475. (begin
  476. (close-input-port inport)
  477. (close-output-port outport)
  478. #f)
  479. (let ((prev-inport (current-input-port))
  480. (prev-outport (current-output-port)))
  481. (set-input-port inport)
  482. (set-output-port outport)
  483. (let ((res (p)))
  484. (close-input-port inport)
  485. (close-output-port outport)
  486. (set-input-port prev-inport)
  487. (set-output-port prev-outport)
  488. res)))))
  489. ; Random number generator (maximum cycle)
  490. (define *seed* 1)
  491. (define (random-next)
  492. (let* ((a 16807) (m 2147483647) (q (quotient m a)) (r (modulo m a)))
  493. (set! *seed*
  494. (- (* a (- *seed*
  495. (* (quotient *seed* q) q)))
  496. (* (quotient *seed* q) r)))
  497. (if (< *seed* 0) (set! *seed* (+ *seed* m)))
  498. *seed*))
  499. ;; SRFI-0
  500. ;; COND-EXPAND
  501. ;; Implemented as a macro
  502. (define *features* '(srfi-0))
  503. (define-macro (cond-expand . cond-action-list)
  504. (cond-expand-runtime cond-action-list))
  505. (define (cond-expand-runtime cond-action-list)
  506. (if (null? cond-action-list)
  507. #t
  508. (if (cond-eval (caar cond-action-list))
  509. `(begin ,@(cdar cond-action-list))
  510. (cond-expand-runtime (cdr cond-action-list)))))
  511. (define (cond-eval-and cond-list)
  512. (foldr (lambda (x y) (and (cond-eval x) (cond-eval y))) #t cond-list))
  513. (define (cond-eval-or cond-list)
  514. (foldr (lambda (x y) (or (cond-eval x) (cond-eval y))) #f cond-list))
  515. (define (cond-eval condition)
  516. (cond ((symbol? condition)
  517. (if (member condition *features*) #t #f))
  518. ((eq? condition #t) #t)
  519. ((eq? condition #f) #f)
  520. (else (case (car condition)
  521. ((and) (cond-eval-and (cdr condition)))
  522. ((or) (cond-eval-or (cdr condition)))
  523. ((not) (if (not (null? (cddr condition)))
  524. (error "cond-expand : 'not' takes 1 argument")
  525. (not (cond-eval (cadr condition)))))
  526. (else (error "cond-expand : unknown operator" (car condition)))))))
  527. (gc-verbose #f)